
 1 

 

 

 

 

 

   BORN: 
 
 
            A 
 
 
       universe 

 
               II 
 
 
 
   Hans   Gennow 

 

 



 2 

 

In our earlier book we showed how the fundamental particles protons, electrons and 

neutrinos could be created out of vacuum through a fundamental quantum 

mechanical process without violating the conservation laws of energy and 

momentum. This leads to a universe where we specially noted that galaxies were 

formed with a massive core. The predicted mass range fits well with present 

observations 

 

However, we could not explain why there should be three forces except the 

gravitational one although we did put forward a hypothesis that the forces are 

determined through the gravitational force. We can now show how this can come 

about through yet another fundamental quantum mechanical process. This means that 

we can determine the magnitude of their couplings. We note that the agreement is 

quite good.  

 

If we let the value of the gravitational constant vary, we find that the strong force 

exhibits a minimum right at the present value of the gravitational constant. We have 

carefully checked our procedure to be sure that we do not generate such an effect in 

some way. This is a quite remarkable finding which we discuss in the text since it is 

a bit lengthy. However, we can mention a strange outcome, namely that if the value 

of the gravitational constant would have been different from its present value, life as 

we know of most likely would not exist. 

 

If the mentioned minimum is right, then we can deduce the magnitude of the couplings 

of all the four forces. A truly unexpected result. At present we have no explanation for 

this result. 
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  Part I 
 
 The creation of the fundamental particles. 

 

0. Introduction. 
 

 

In our earlier book (Born: A universe, available as a PDF on our site, 

www.gennowdata.se) we presented a method to produce the standard 

fundamental particles protons, electrons and neutrinos out of vacuum 

without violating any laws of physics.  

 

Based on this we showed how a universe could be build. It leads to a 

universe with galaxies having a massive core in the centre. The expected 

range of masses of the cores seem to fit well with present observations. 

Furthermore, we found that phenomena like dark matter and dark energy 

have quite natural explanations. We called are model “the Freezening” 

because it resembles the process where water freezes to ice. 

 

However, we could not explain why there should be exactly three forces 

except the gravitational force. We made the hypothetical suggestion that it 

is the gravitational force that is the creator. We argued that the 

gravitational force is the most fundamental one since it is needed to 

conserve energy. The problem is how such a feeble force can give rise to 

the tremendous span of the strengths of the forces.  

 

Just think that a bubble creates a pair of electron-positrons that 

immediately annihilates into a pair of photons. What would prevent them 

to just disappear into infinity thereby breaking the conservation of energy? 

The gravitational force must be erected before anything else happens. The 

question then is what effect it might have on what follows thereafter. It is 

this process we want to investigate. 

 

In this book we will show how this may come about. This means that we 

can predict the magnitude of the other forces starting off from the 

gravitational force. 

 

The question we asked is what kind of mechanism can cause exactly three 

forces other than the gravitational one. There must be some mechanism 

because otherwise there could be millions of different types of forces. 
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There may be various ways of achieving this but the way me just 

mentioned felt more natural. 

 

We will begin with a short résumé of the relevant parts of our last book 

concerning the creation of the fundamental particles. This is needed since 

the procedure we use is in principle the same as before.  It is also needed 

for the understanding of what comes next. Please check out our earlier 

book for a more detailed description. In part I we will give you the 

fundamentals of how the different species of particles can be produced. In 

part II we will connect them together under the umbrella of the 

gravitational force. 

 

Before we start we would like to mention that we use the rationalized SI 

system for units. We also would like to note that all calculations are made 

on a 64-bit platform, but precision is limited to a 32-bit one by software. 

We will notify you when we get into problems. 
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1. Global energy conservation and the gravitational force. 
 

 

We all knew that things might hide under the surface of a lake. We will 

now discuss what actually can hide under another surface, namely that of 

vacuum. 

 

There are always things going on in a vacuum bubble. Lumps of energy 

can be created as long as they return to their original vacuum state in a 

reasonable time. How do we know there are bubbles at all? The answer is 

the speed of light. If there were no bubbles, the speed of light would in fact 

be infinite. What happens is that the bubbles can absorb and reemit the 

light, but with a delay. An example. It takes light about 3ns (nanoseconds) 

to move 1 meter. If each bubble delays the signal by 10-15 seconds we 

would expect about three million bubbles per meter. 

 

Now suppose that something is created and flies away. What will make 

them return? If they don’t they will in fact violate energy conservation. We 

cannot prove that energy conservation must hold but it is plausible. 

 

Axiom 1.   

 

Global energy conservation. 

 

The total energy of a system that 

is not under influence of 

external forces is constant. 

There can be no net flow of 

energy in any direction. 

 

 

Note that we have extended the normal definition of energy conservation. 

We need some kind of a universal force, the gravitational, that assures that 

whatever is produced will eventually return back.  The question is how 

such a force could look like. One could think of several possible ways but 

nature will just do what is needed. Nothing more. 
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In fact, such a force could have a simple R/1 dependence. Well, we 

already know this but there is no way to tell what it actually should look 

like. We can only make it plausible. 

 

We could argue that this force, if having just that R dependence, should 

have α=2, nothing else. If α is smaller the force will not be strong enough, 

if it is larger it would be over kill. 
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2. Local energy conservation. 
 

 

 In a world with only global energy conservation, strange things will 

happen. E.g. two cars in a straight head on collision could end up besides 

the row in the same ditch, while we intuitively would expect them to end 

up in different ones at least. Well, this is in fact the conservation of 

momentum we have in mind.  

 

If they end up in the same ditch, it would mean that something else has to 

compensate the missing momentum. The earth itself, presumably. 

However, if there instead were two space ships somewhere in empty space, 

what would then cause the compensation? We would in fact need a speed 

of interaction that is infinite. If not, we would break global energy 

conservation.  

 

We therefore need local energy conservation as well. 

 

Axiom 2.   

 

Local energy conservation. 

 

Axiom 2 holds at any point of 

interaction. 

. 

 

A direct consequence of Axiom2 is the Newton laws of mechanics. 
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3. The characteristics of matter. 
 

 

A question we cannot answer is that of the existence of something we call 

the nature. This may lead to the discussion of something divined, which is 

not part of our profession. We must assume that something, whatever it is, 

can be created. This something we call energy or lumps of energy. In short 

energy lumps. 

 

When lumps of energy are released in a vacuum bubble, there must be a 

local force that prevents them from just flying away. Local energy 

conservation must be fulfilled. To achieve this, we introduced the 

characteristics of the energy lumps. 

 

 

Axiom. 

 

The characteristics of energy lumps. 

 

Every lump of energy has a property we call 

its characteristic Ç. Ç is always produced 

together with its anti-characteristic Ç* and 

fulfils the relation  

 

 Ç + Ç*=0. 

 

This means that they eventually will 

annihilate completely. Furthermore, we 

associate with every Ç a quantum number of 

unity. 

. 

 

   

The reason for a number of unity is that a measurement of Ç should result 

in one unit of this property. The characteristic is a quantum mechanical 

property and when quantization takes place its z-component (the normal 

choice) can show up in three different states, +1, -1 and 0. 

 

It is the characteristic that gives rise to the force that prevents the lumps 

from flying apart.  
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4. The mechanism. 
 

 

What can be produced? Let’s call it Q (Quo Vadis), whatever it is. Now, 

say a couple of Q’s are produced. As we went through earlier, a force is 

erected between them and they will eventually come together and 

annihilate. Nothing left. No success. 

 

Let’s try again. A pair is again produced but just before they smash into 

each other upon return another pair is produced at the same spot. Off 

course we could expect that these guys might collide, and we assume it is 

done in such a way that one couple gets extra energy and flies away. The 

other pair loses energy and gets trapped into a bound state. We picture this 

process in Fig 4.1 

 

  
 

 

 

 

 

 

 

 

 

 

 Fig. 4.1. The formation of a bound pair. 

 

The bound pair cannot annihilate because if they did, we will be left with 

negative binding energy floating around and no force present. This is 

impossible.  

 

The process must be a bit more complicated because the bound pair gives 

rise to an angular momentum that was not present from the beginning. We 

could compensate for this if the two objects acquire a spin upon the 

collision. If the spins are aligned, the rotational angular momentum could 

be compensated. The question is whether the spins can match the orbital 

momentum. In an atom they do not. 

 

Another way would be to add another couple, created in parallel with the 

first one and which ends up in a bound state rotating the other way so that 
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the net angular momentum will be zero. We now in fact have three couples, 

one of which escapes and two is left. What prevents the remaining couples 

from colliding and annihilating? 

 

If the force that attracts a pair of Q’s is a plain central force the two pairs 

that are left could be expected to start to attract each other with a 

catastrophic outcome. If the force on the other hand has a magnetic type 

of component that can be used to keep them apart. The nature of such a 

force is in fact just like the electromagnetic force. 

 

Unfortunately, in the electromagnetic world the magnetic field can never 

exactly compensate for the electrical force. Only if the objects move with 

the velocity of light this can happen. However, if the objects have a spin, 

acquired through the collision, with an associated magnetic field that can 

be used to get full balance. An electron would thus do the job, and this will 

be our working hypothesis. We call this the balance act.  

 

What says that we can have a pair in such a bound state? If the Q really is 

representing the electromagnetic force we already know that an electron-

positron pair cannot be in a stable state (positronium). Another problem is 

that the energy is far from enough in such a system to be useful. The 

objects must be very close to have enough energy, in fact they could even 

overlap. 

 

 To investigate whether they can form a bound state we used the Dirac 

equation since it is a relativistic wave equation also considering the spin 

of the electron. The problem with such equations is that they only hold for 

point like particles. In our case the particles produced are really close to 

each other and can in fact overlap. They will not look like points. 

 

To get around this problem we calculated an effective potential due to the 

overlap and used that when solving the wave equation. Since the force is 

radial we can always do this. We must account for all effects that are 

different from those of a point. We repeat the details of the calculations in 

the Appendix. We will, with a slight modification, also need them for the 

next step in part II. 

 

In short, we find a correction to the Coulomb potential to mimic points. 

The correction is determined by calculating the resulting force starting 

from some assumed distribution of points. If the density of points goes as 

the inverse of the radial distance, the produced electrical field will be 
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constant with R inside the object. We found that this was an adequate 

hypothesis. For the details we refer to our earlier book. 

 

We show in Figs 4.2-3 the correctional factors to the coulomb force for the 

electric and magnetic parts separately. We plot them as functions of the 

radial distance R/ R0, where R0 is the radius of the objects. First, we note 

that if the objects were points, the factors would be identically 1 (R>2 R0 

always). 

 

 

 
Fig 4.2. The behaviour of the correctional factor for the electrical part. 

 

 
Fig 4.3. The behaviour of the correctional factor for the magnetic part. 

 

 

We see that the electrical contribution in fact kills the force at small R, 

quite different from the coulomb force for points. The magnetic factor is a 

bit more spectacular. At smaller R it gives a force that is repulsive and for 

larger R attractive. To find the net effect we must add them together in the 

right proportions and apply them on the coulomb force, which we have 

done in Fig 4.4. 
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Fig 4.4. The effective force with the correction applied. 

 

As we see the behaviour at small R is remarkable. The asymptotic 

behaviour of a point like coulomb force is gone. It could be interesting to 

see also how the net potential behaves. We obtain it by integrating the force 

(the electrical and magnetic factors separately). The result you find in Fig 

4.5. 

 

 
Fig 4.5. The effective potential with the correction applied. 

 

We note that the coulomb potential now has turned into a shallow potential 

well. In the appendix we give further details on how to apply this factors 

to the Dirac equation. With these tools we are set to start to investigate 

solutions to the wave equation. 

 

Since we do not know what kind of states there might be, we do an energy 

scan. This means that we calculate the behaviour of the wave function as 

function of the radial distance R and investigate how it varies with energy. 

More precisely we investigate how the tail behaves by taken a sample of it 

at large R and plot that quantity.  Instead of peaks we are looking for dips. 
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The wave function should tend to zero with increasing R if there is a good 

solution. 

 

To find a solution in the present case we must let the radius of the object 

also to vary. The result is presented in figures 6 and 7.  

 

 
 

Fig 4.6. The behaviour as a function of the binding energy in units of joule. 

 

 
Fig 4.7. The radial probability density R2Ψ Ψ*. 

 

 

The binding energy corresponds to four masses. This means that there is 

energy available to create one extra particle that leaves with a kinetic 

energy worth of one mass.  
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5. The three forces. 
 
 
5.1 The electromagnetic force. 
 
 
In the discussion above we used the electromagnetic force as an example. 

All forces must have the same construct, i.e. an electric like component as 

well as a magnetic like one. Otherwise they cannot be produced. This is 

the basis for our hypothesis of the gravitational force being the creator.  

 

We have thus found a well-defined solution to the wave equation. We 

should perhaps clarify what we actually mean by the quantization: 

 

 

Clarification.  

 

The quantization that takes place is a 

quantization of space. It is the size of the 

object that gets quantized. That results in 

a well-defined particle. 

  

 

 

What about the particle mass?  We made the following assumption: 

 

 

Postulate.  

The electron is made up by a constant 

electric force field that is rotating. The 

spinning electrical field generates a 

magnetic field. 

  

 

 

Exactly how the field lines are arranged we do not know. In the present 

case they will be radial. In another arrangement they might be 

perpendicular to the spin axis. You could perhaps think of it, as the field 
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lines are standing waves fixed on the border. They might also form closed 

loops, which open up outside the electron. This is perhaps not in line with 

what you have been taught about the electrical fields, but who knows what 

rules hold inside of the object. Whatever we do it will not affect the 

Maxwell equations. What Maxwell concerns, the electron is a black box, 

just a charge of unknown origin. 

 

The proof of our postulate is that if we calculate the energy content of the 

electron we find: 

 

 

 

 

The properties of the 

electron. 

 

Predicted 

 

Measured 

Radius               [fm] 

Energy content [J] 
.70.03 

.82.04  10-13 

 

.818 10-13 

 

 

We had a look into other arrangements of the field than a constant one.  

We see difficulties in getting consistent solutions. At some point they seem 

to fail. 

 

The solution to the Dirac equation determines the radius of the particle 

being investigated. From this we got the following result concerning the 

electron: 

 

 

 

Conclusion. 

The mass of the electron and its 

charge are dual to each other. From 

the one we can calculate the other, 

e.g.: 

0

2

016 Rmce  . 
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5.2 The strong and weak forces. 
 
 
The important point in the production of particles is that the balance 

between the pairs works. The strong force must have a similar construct 

as the electromagnetic force. This means that we have strong charge and 

strong magnetism. The same holds for the weak force, weak charge and 

weak magnetism. 

 

Since these forces interact through a massive exchange, the correctional 

factors will have to be treated slightly differently. The treatment is else the 

same as in the electron case. The following tables display our findings. 

 

 

 

 

 

The properties of the 

proton. 

 

Predicted 

 

Measured 

Radius, strong       [fm] 

Radius, electrical   [fm] 

Energy content [J] 

.92.05  

 -“-  

1.53.08*10-10 

 

- 

.875 

1.50*10-10 

  

 

 

 

 

The properties of the neutrino. 

 

Radius [M]                     2.9.2 10-16 

Interaction length [M]    3.2.2 10-17 

Mass [J] ([eV]) 2.1.4 10-20 (.13.03) 

 

 
 
The descriptions of the forces are given in the Appendix. 
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6. The gravitational force revisited. 
 

6.1 The relativistic gravitational force. 

 

The gravitational force is completely different from the other ones just 

noting that it depends on the masses of the particles interacting. The 

electromagnetic force does depend on the charge, but that is a fixed value 

(we are not talking about composite objects) the same for all charged 

elementary particles. 

 

To be more correct, we have learned that particles consist of bound fields. 

This means that we expect the gravitational force to act on the strength of 

the fields, or their energy content. Consequently, we should use the 

relativistic mass of an object in the Newton gravitational law. 

 

To clarify, we first note that the energy density of the field is proportional 

to the field squared. Since a moving field scales with the Lorentz factor γ 

we get a factor 2 (see appendix). However, for an object with a given size, 

its volume will be reduced by a 1/ γ due to the Lorentz contraction, which 

means a net effect of γ, just as expected. That is, the relativistic mass goes 

like mγc2. 

 

To find solutions to the Dirac equation we first assume that the 

gravitational force has an electric as well as magnetic component just as 

the other forces. We need it for the balance. The second problem is how to 

incorporate the gravitational force into the formalism of the Dirac 

equation. We give the details in the Appendix, chapter I.4. In short, we 

found the following expression for the force: 

 

 

The general gravitational force. 

 

.

,

0,2,

0,1

/)/1(*

4

222

22

2121

constnalgravitatiotheG
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This means that the gravitational force acts indirectly on the other fields 

through their energy contents. 

 

We note that we cannot prove that light can be included in the way given. 

It is just a plausible assumption. Photons have an energy content and we 

must expect that they should behave with respect to the gravitational force 

in a similar way as other objects build by fields. Furthermore, the question 

is how the gravitational force acts upon fast oscillating fields.  

 

The factor 2 in the case of light comes about for the following reason. The 

energy density of the field goes like 2 as we discussed earlier. For an 

object without definite size, i.e. no rest mass, we would be left with that 

factor. 

 

Let us clarify. We first note that if we bring an object from infinity to a 

distance R from a gravitational source M, its kinetic energy will, according 

to (1), be 

 

RGMmEk / .    (2) 

 

The total energy E of that object is  

 

kEmcmcE  22 .    (3) 

If we divide (3) by 2mc we get using (2) 

LL RcGM  *1 2 , 

or  

GL RcGM   )1/(1 2 .   (4) 

 

This defines the quantity G , which depends only on the gravitational field 

from another object. 

 

If we take the square of (4) we will get to first approximation 

 

)21/(1 22 RcGMG  .   (5) 
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This means that the energy density of the confined field in an object scales 

with a factor that depends only on the given gravitational field. For an 

object with a definite size the Lorentz contraction reduces this to the factor 

(4), i.e. the total energy of the object goes like 2cm L as expected. For a 

mass less object, the total energy instead depends on (5). 

 

Comparing the two expressions we see that instead of G for normal objects 

we should replace it by 2G for mass less objects. 

 

We have compared with two classical experiments. Firstly, we have the 

bending of light in a gravitational field. Secondly the perihelion shift. It 

turns out that our predictions agree very well with observations. In fact, 

we arrive at exactly the same equations as comes out of general relativity. 

This despite the fact that our approach is completely different. 

 

We note an interesting consequence of our formulation of the gravitational 

force: 

 

Conclusion. 

 

Light 

bends 

light. 

 

 

This means that two photons can interact through the gravitational force. 

This result is not contained within the formalism of general relativity. 
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6.2 Gravitational structures. 
 

 

Can there be particles formed by the gravitational force? To differentiate 

it from elementary particles, we would like to call it:  

 

Definition. 

 

A gravitational structure, 

or a “Grav” in short. 

 

If we compare the strength of gravitational and electric forces, the former 

would for an electron be about 1039 times weaker.  

 

To get a feeling on how things behave, we first asked ourselves what mass 

two objects needs to have to produce a force that is the same as that 

between two elementary charges. The answer is approx. 2*10-9 kg. Quite 

heavy stuff compared to other elementary particles. The problem is that 

the object would have a radius of merely 10-36 m. Such objects would be 

more or less invisible! 

 

If we instead go the other way around, i.e. we assume they have the same 

radius as the other particles, 1fm, their mass should be about 1012 kg. Just 

the mass of some thousands of super tankers! 

 

The question is whether the gravitational force also has the same structure 

as the others. As we have discussed we need a magnetic component in 

order to fulfil the balance act. We are not used to think about this force in 

such terms, so it will be a challenge.  

 

We describe in the Appendix how this force has been implemented into 

the Dirac equation. 

 

It turns out that the situation is quite complex. In the example with a mass 

of 2*10-9 kg we can in fact find a nice solution but again with a tiny radius 

of 2*10-36 m. The problem with such a solution is the small radius. The 

density of such an object is enormous compared to other particles. 
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If we increase the mass by a factor ten we again get a similar solution but 

now with a radius ten times larger. However, the background increases 

drastically, and the signal does not look as significant. But still a nice 

solution if you just zoom in on it.  

 

As you see the situation is not quite clear. We need an additional 

constraint. 

 

We just would like to make another interesting comparison. The density 

of an electron is of the order of 1015 kg/m3. The object with a mass of  

2*10-9 has a density of 1099 kg/m3. The question we now asked is to what 

mass/radius should we scale the latter object to get a similar density as the 

electron? The answer is an object of mass of about 1045 kg and a radius of 

1020 m! Like a small, heavy galaxy or a giant black hole. 

 

Having all this in mind we come to the following: 

 

 

 

Conclusion. 

 

We cannot tell whether 

gravitational structures 

may exist or not. There 

are indications, but the 

results do not look 

reasonable. 

 

 

 

This is the conclusion we made in our earlier book. In part II additional 

findings might give us a clue on the subject. 
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7. Summary part I. 
 

We have shown how the most fundamental particles can be produced out of 

vacuum, through a fundamental quantum mechanical process, while fulfilling 

the conservation laws. As a consequence, the process leads to deeply bound 

pairs of particle-antiparticles. The binding prevents them from annihilating. 

Just like atoms, but now on a different scale.  

 

In our earlier book we showed how a universe can be build based on these 

processes. We especially noted that galaxies are formed with massive cores 

build from the bound pairs. The predicted masses of the cores fit well with 

present observations of black holes. 

 

In part II we will discuss how the three forces can come about. 
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  Part II 
 
 The creation of the fundamental forces. 

 

0. Preludes 
 
We have in part I given you the background of the creation of the fundamental 

particles. As you have seen we have assumed that they have a similar 

structure, namely that they are composed of electric and magnetic like 

components. We needed this to create the fundamental particles through a 

quantum mechanical process (the balance act made this possible, chapter I.4). 

 

If the forces have a similar structure the idea that they were generated by a 

fourth force came along. That one is the gravitational force. The gravitational 

force is needed to sustain global energy conservation and thus the most 

fundamental force. 

 

Just imaging that a pair of electron-positrons are produced that annihilate 

right away. What would prevent the photons from just escaping thereby 

violating energy conservation? We need the gravitational force. It must 

always be erected when objects are created out of vacuum and we will next 

discuss what the consequences can be. 
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1. The mechanism. 
 

 

In part I we presented a scenario of the creation of objects out of vacuum. 

We called them lumps of energy or energy lumps in short.  

 

This led to the creation of e.g. electrons (/positrons) whose sizes we could 

determine by using the Dirac equation (the masses were then given by a 

simple picture of the particles in form of confined fields). Bound pairs of 

electrons and positrons were formed while another couple acquired enough 

energy to escape. 

 

This time we are looking into the process that precedes the one where the 

particles are created. This means that we are investigating the mechanism 

that could determine which species of particles can be produced, i.e. 

protons, electrons or neutrinos. Due to the assumption of an associated 

quantum number of unity (chapter I.3) we expect three forces. More 

specifically, we would like to calculate the strength of these forces. The 

elementary particles are created in the step that follows this initial process.  

 

As we discussed in our earlier book the gravitational force must be erected 

when lumps of energy begin to form. This to fulfil global energy 

conservation. Thus, we will investigate the gravitational force by making 

the picture of two virtual gravitational structures (Gravs) that blow apart and 

investigate the quantum mechanical behaviour of such a system. A Grav is a 

gravitational object just like an electron is the fundamental object of 

electromagnetism. We investigated the possibility of gravitational structures 

in our previous book but could not make any conclusions of their existence. 

We were lacking a needed constraint. This time we might have found that 

constraint. 

 

The picture is that a gravitational field is erected and leads to three 

quantized states. In this field particles are formed accordingly and along the 

description we gave in our earlier book. The states we find we associate 

with the different forces. It is not the question of any bound states as in part 

I. 

 

In part I, Fig 4.1 we showed how particles may be produced. A bubble 

explodes and a pair of particle-antiparticle flies away. However, the 

gravitational force will make sure that they return to fulfil global energy 
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conservation. Upon return they might collide by another couple just opening 

in such a way that one pair acquire energy to escape the scene while the 

other pair gets trapped into a bound state like an atom. 

 

 We are thus investigating a linear problem and the procedure is that in this 

case we will use the Klein-Gordon equation implemented on a Coulomb like 

potential. The treatment is quite like the case in part I, namely we take into 

account the size of the virtual objects. This lead to correctional terms that 

modify the force. The procedure transforms the force into a nice function, 

i.e. no singularity at R=0. The details are described in the appendix. 

 

The question is what masses these virtual Gravs must have or more 

correctly, what strength the gravitational force must have to be able to create 

the other forces. To cover all known forces the strength of the force must be 

at least as that of the strong force when the formation starts. This is our first 

assumption. We will discuss below the consequences if we change that 

criteria. 
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2. The procedure. 
 

 

As we did in our earlier investigation we considered the size of objects. This 

lead to the calculation of correctional terms to be applied on a coulomb like 

force. The wave equation is simply modified with these terms so that it is 

applicable on sizeable objects and not just points. We use the same technic 

now with the difference that the objects just move longitudinal and not in a 

circular orbit. We give the details in the appendix. There will be one factor 

for the force and one for the potential. We have assumed that gravitational 

structures, Gravs, will have an “electrical” and “magnetic” component like 

the electron and a spin. Thus, there are four factors in all, but the electrical 

and magnetic components can be added up in their right proportions. 

 

In fact, in our earlier book we assumed that the strong, the electromagnetic 

and the weak forces have a similar structure. We need this to have the 

gravitational force to give rise to the other forces. 

 

We have two unknown parameters, namely the radius of the virtual object 

and its mass. From the solutions to the Dirac equation of a bound pair of the 

fundamental particles we found that the binding energy were a factor four 

times the mass.  Due to the Lorentz factor this might change but the exact 

value is not important in the following. From expression 6.1.1 in part I the 

potential energy for two alike objects with one fix and the other circulating 

around is 

 
2 2 2[ * 1 ]U GM R v c   

 

This means that, using the binding energy Eb=4Mc2, we have 

 

MRM /2 , 

 

or: 

 

RM  .     (1) 

 

We want to investigate the behaviour of the effective coupling. As seen we 

expect it to be proportional to R2 for a given binding energy.  We therefore 

investigate the density R2 Ψ Ψ* as function of R. The Lorentz factor is 



 31 

implicitly included through the correctional factors as described in the 

appendix. 

 

In the case of the strong coupling we would expect an object with mass and 

radius of order 10-8 Kg and 10-35 m respectively. More specifically, we 

require that the construct 

 
2 2 21GM v c  

 

be equal to the strong coupling at R=0 (one object is at rest). We evaluate it 

from the calculation of the correctional factors, see Appendix. The 

parameters must be chosen so that they fit with the strong force. The 

correctional terms are then calculated according to that prescript and 

implemented into the wave equation. 

 

To explain the procedure in more detail, we make an analogy with the 

hydrogen atom. We have a look at the third orbital state and plot the radial 

density in fig 1. 

 

 
Fig 2.1. The probability density R2 Ψ Ψ* for the third orbital state of 

hydrogen. 

 

As seen there are three signals and not just one. What happens is that the 

electron in the third level has a probability to be found in the lower levels. 

An electron could emit a photon spontaneously and drop down to a lower 

orbit. The probability for these transitions we find by first integrating the 

peaks and then take the square of these numbers. See any textbook on the 

subject, e.g. [1].  
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We show in fig 2a and 2b the radial distribution for the present case, again 

the third state. We see that we have three peaks corresponding to the three 

states.  We divided them into two regions in R due to the enormous span of 

magnitudes of the peaks. 

 

 

 
Fig 2.2a. The probability density R2 Ψ Ψ*. 

 

 

 
Fig 2.2b. The probability density R2 Ψ Ψ*, but for lower R. 

 

As you see it looks quite similar to the hydrogen case, except for the 

magnitude of the peaks. Their relative sizes differ quite substantially. 

.  

However, we cannot directly compare the hydrogen case with the present 

case since we are not dealing with bound objects circulating around each 

other. We are instead investigating the behaviour when we drag apart two 

virtual objects. What we can do is to read off the probability to find the 

virtual objects in the various states just as in the atomic case.  
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In doing so we note that the peak at the largest R corresponds to a larger 

energy and therefore to a stronger force which we take to represent the 

strong force. We need more energy and a stronger force to drag them further 

apart. This means that we can investigate transitions to the other states with 

lower energies. The middle one would then correspond to the 

electromagnetic force while the one at the smallest R represents the weak 

force. This is our hypothesis and the outcome of the calculations will show 

whether this is reasonable. 

 

If you are still in the atomic world one would expect a larger R to 

correspond to less energy. However, in our case you should rather think of a 

string or rubber band that is being stretched, the more the more energy 

needed. 

 

We integrate the peaks and take the square of these numbers. We compare 

them by dividing the two larger peaks and the two smaller ones. The result 

are two fractions which we compare to the ratio of the strong over the 

electromagnetic couplings respectively the electromagnetic over the weak. It 

turns out that the fractions come close to the expected ratios. 

 

However, the parameters are not completely fixed by this procedure why we 

need another constraint. We have investigated this in two ways. If the 

virtual objects become real, we can require that we achieve a good solution 

to the Dirac equation. This means that the presumed gravitational structures, 

Gravs, should give a reasonable solution just as is the case for the standard 

elementary particles. It turns out that our precision is not good enough to 

make any definite conclusions. The reason for this is that the energy is very 

large which means we are close to the classical limit with weak, broad 

signals. In any case we noted in our earlier book that the wave equation is 

not very selective in this case. We will come back to this later. 

 

Another way would be to simply require that the electromagnetic to weak 

ratio comes out as expected. We only need a smaller adjustment to achieve 

this. We would like to find some way to relax this criterion. It turns out this 

can be achieved but in a very unexpected way. 

 

The spin of the virtual Grav is determined in the same way as we did for the 

other elementary particles, namely a point on the boarder is set to the 

velocity as given from a trapped, bound couple. In the case of the other 

forces the velocity of the boarder corresponds to a Lorentz factor of 3. We 

now see that we might expect a somewhat larger value as indicated by the 
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solutions to the Dirac equation. But, as noted, we cannot give a definite 

answer, so have investigated two cases (3 and 4) to be able to see if there is 

any difference in the result. We will discuss this in chapter 4.1 as well as 

have a look on what happens if they do not have spin. 

 

The procedure is to choose a combination of R and M that gives rise to a 

certain value of the strong coupling GY (defined in Appendix I.2) and a 

certain value of the strong to electromagnetic ratio. We choose R and M 

such that the second ratio, the electromagnetic to weak, comes out as well as 

possible. 

 

 

[1] Eugen Merzbacher, quantum mechanics, John Wiley & sons, Inc, 1961 
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3.Results. 
 

 

We solve the Klein-Gordon equation for the case of dragging apart two 

sizeable virtual objects to investigate the effective coupling. We thereby 

account for the correctional factors as explained in the appendix. As we did 

in our previous book, we do an energy scan to find signals. This means that 

we calculate the behaviour of the wave function as function of the radial 

distance R and investigate how it varies with energy. More precisely we 

investigate how the tail behaves by taking a sample of it at large R and plot 

that quantity.  Instead of peaks we are looking for dips. The wave function 

should tend to zero with increasing R if there is a good solution. We show in 

fig 3.1 how it can look like. As expected the outcome will be a series of 

signals. The requirement of a quantum number of one will limit it to the 

three highest ones. 

 

 
Fig 3.1. The behaviour as a function of the binding energy in units of joule. 

 

Compare this to fig 4.6, part I and please note the difference in the scale of 

the energy. The signals are now much wider and the background level 

larger. If we just zoom in on them, the distribution in R looks quite 

reasonable but still not as nice as in fig 2.2. That one was taken at lower 

energy where background is smaller. The largest peak is affected by the 

background which leads to a subtraction method which we describe in the 

appendix.  

 

For every chosen combination of R and M we get a value for the Yukawa 

coupling GY. We plot the square root of the calculated ratio of the strong to 

electromagnetic couplings normalized to the expected ratio of the couplings. 

In doing so we have chosen the parameters so that the electromagnetic to 

weak ratio comes out more or less correctly, but we are dealing with small 
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adjustments (< 5%). The reason for taking the root is just historical.  It gives 

numbers of the order 50-100 for the values of the ratios which are a bit 

easier to handle. The visualization also is improved as seen from fig 2 where 

the result is presented. The region below the line in fig 2 is easier to 

disentangle. 

 

 
 

Fig 3.2. The root of the ratio of the strong to electromagnetic coupling 

divided by the expected ratio. 

 

The ratio shown in fig 2 is expected to be one. This is shown by the dotted 

line. As seen we have a distribution that first drops off rather quickly but 

more gently after the cross over. For values of the Yukawa coupling GY less 

than about 30 the curve blows up above 2. 

 

We see that when the strong coupling is about 44 the calculated value agrees 

with the expected one (by eye, we have not tried any fit since we do not 

know what the behaviour should be). In the cross over region the 

electromagnetic to weak ratio comes out to the expected value.  

 

We discuss in the appendix the procedure to extract the values shown. It 

involves corrections due to background. Such corrections are larger for 

smaller values of GY but drops to essentially zero at the largest values. The 

electromagnetic to weak ratio cannot be kept quite at its expected value for 

larger values of GY which leads to corrections that works the other way 

around (< 5%). We give the details in the Appendix, but we show in fig 3.3 

how the electromagnetic to weak ratio comes out. 
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Fig 3.3. The root of the ratio of the electromagnetic to weak coupling 

divided by the expected ratio. 

 

At the crossover the gravitational object comes out to approximately a mass 

of 1.9*10-8 kg and a radius of 1.7*10-35 m. This is very close to the Planck 

scale. We see that the signals are becoming quite wide when we come up in 

energy as expected. We are approaching the regime of classical physics. We 

could mention that if we use the radius and mass of a Planck object, the 

Yukawa coupling GY would come out to 90. 

 

To confirm are model an experimental finding of such kind of objects would 

be welcome. We discuss below a possible experimental setup. 

 

It is interesting to note that since we have one unique solution for the value 

of GY we can in principal determine the electromagnetic coupling and hence 

the weak coupling absolutely. However, the result depends on the ratio of 

the electromagnetic and weak coupling constants. If that is different the 

curve will shift a bit to the right or the left. Perhaps a unit or two. We need 

another piece of information which we will discuss below. 

 

We summarize the result in the following table where we compare to the 

expected ratios of the known values. The expected value of GY we have 

estimated from [1] at the threshold for nucleon production. The energy 

dependence is quite strong in this region which makes the expected value a 

bit difficult to determine.  
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Relative probabilities 

 

calculated 

 

expected 

Yukawa coupling GY 44±3 38-43 

Ratio of strong to 

electromagnetic 

5.6±.3*103 

 

5.48*103 

 

Ratio of electromagnetic to 

weak 

1.09±.04*104 

 

1.117*104 

 

 

 

 

This result is a bit surprising. The values fit quite well with expectations. 

Nothing says that this should be possible at all. We should clarify that we 

have two parameters, R and M which we could let vary to adjust the 

electromagnetic to weak ratio to come out approximately right. We note that 

the effect of that adjustment is at most 5%, essentially at larger Gy.  

 

   The question is whether this is just a coincidence or not. We have three 

numbers, very different, that fit. What is the likelihood for that? It raises a 

lot of questions. If we use the distribution in R in the case of the hydrogen 

atom, the ratios come out about a factor 100 times smaller. 

 

Off course we must be a bit careful before making too strong conclusions. 

Can this be achieved in another way? What happens if we change things a 

bit? We will try to sort this out in the following. 

 

 

[1] The H1 and ZEUS Collaboration, V. Radescu, HERA Precision 

Measurements and Impact for LHC Predictions, arXiv:1107.4193 [hep-ex].  



 39 

 

4. Discussion 
 

We will investigate various questions that will arise concerning our result. 

 

 

4.1 The dependence of the spin. 
 

As we described in part I the particles created out of vacuum will acquire a 

spin through the collision they undergo. A point on the boarder of a particle 

is set to the velocity it has after the collision, i.e. as given from their bound 

state. The same holds for gravitational objects if produced. In the case of the 

other forces the velocity of the boarder corresponds to a Lorentz factor of 3. 

As we have seen, the solutions to the Dirac equation may indicate a larger 

value. However, the situation is not quite clear cut as we will discuss later. 

We therefore have considered two factors, 3 and 4. 

 

We have tried out both scenarios, but we cannot detect any difference 

between the two cases. With a lower spin we need somewhat larger R and 

M so that the energy of the solution comes out about the same. The 

distribution in R exhibits a clear dependence on the energy (when we move 

over the range of values of the Yukawa coupling GY). 

 

We also investigated the case with gravitational structures, Gravs, without 

spin. The behaviour looks much the same as in fig 3.2. The problem is that 

the electromagnetic to weak ratio is about 30-40% to low over the whole 

region and we cannot change it. This scenario is in other words of no 

interest. 

 

 

 

4.2 The strong force. 
 

The first question might be what the result would be if we used the strong 

force directly instead of fixing the gravitational force to the strong coupling. 

 

The result is that the electromagnetic to weak ratio is off by a factor 2 about. 

The other ratio a bit less. This time everything is fixed why we cannot do 

anything about it. 

 

We can now make the following: 
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Conclusion. 

 

Only when we start off from 

our formulation of the 

gravitational force with a 

strength corresponding to the 

strong force we find good 

solutions to the wave 

equation where the relative 

strength of the forces come 

out right. 

 

This means that our findings are not just circumstantial. 

 

This also means that the requirement that the force at R=0 should be equal to 

the strong force is not the explanation for our result. 

 

 

 

4.3 The Newton formulation of the gravitational force. 
 

In our calculations we haves used our version of the gravitational force. What 

would the outcome be if we instead started off from Newton´s formulation? 

 

It turns out that the value of the electromagnetic to weak ratio is too small by 

a factor 2 about. If we lower M the just mentioned ratio would come up but 

this would also hold for the strong to electromagnetic ratio which now would 

come out much too high. This means that if you look on fig. 2 the curve gets 

shifted to the left, more than a factor 2. In fact, GY of the cross over point 

seems to drop down below the experimental limit. 

 

In all we can make the following  

 

 

Conclusion. 

 

The newton formulation 

fails to give the expected 

result.  
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Our interpretation is then that this result strengthens our version of the 

gravitational force. 

 

The question now arises on how these results depend on the gravitational 

coupling itself.  
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5. The dependence of the value of gravitational constant. 
 

 

What would happen if we changed the value of the gravitational constant? If 

we lower it, we must compensate by larger masses to come back to the 

original situation (the requirement on the coupling at R=0). If we increase it 

we must go the opposite way, lower the mass. If we make it four times 

stronger, we need to decrease M by a factor of 2 but also to increase R by the 

same factor. If we instead look at G/4, then M is increased by a factor 2 while 

the radius is decreased by the same factor. 

 

We checked this out for the case of making it two times stronger. In doing so 

we have to make minor modifications of R and M to make the electromagnetic 

to weak ratio come out correctly just as before. The requirement that the force 

at R=0 should be equal to the strong force is always required to be fulfilled. 

We show in fig 1 and 2 the results for two cases, G*2 respectively G/2. 

 

 
Fig 5.1. The root of the ratio of the strong to electromagnetic coupling 

divided by the expected ratio with twice the gravitational constant. 

 

This looks much the same as in fig 3.2. However, the cross over point clearly 

shifts upwards. Exactly how this comes about is not quite clear. However, we 

noted earlier that we need a somewhat larger mass at smaller values of the 

Yukawa coupling GY than at larger values. This to avoid a too large value of 

the electromagnetic over weak ratio in the lower region. Since the mass now 

is smaller by a factor √2 this might be the cause. All points would in fact 

move up a bit, especially at lower GY, but perhaps not as much as in fig. 5.1. 
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If we on the other hand, make the gravitational constant smaller we need a 

larger mass. By the same argument we would expect the curve to shift down, 

fig 2. 

 
Fig 5.2. The root of the ratio of the strong to electromagnetic coupling 

divided by the expected ratio with half the gravitational constant. 

 

Instead it again shifts upwards. This means that the explanation we just tried 

is not the answer. The mass now is larger by a factor √2. We got a bit puzzled 

when we saw the result. Furthermore, we note that the shift is in fact about 

the same.  

 

We repeated the calculation making the gravitational constant four times 

stronger, fig 5.3.  

 

 
Fig 5.3. The root of the ratio of the strong to electromagnetic coupling 

divided by the expected ratio with four times the gravitational constant. 

 

The crossover now perhaps shifts to slightly larger values of the Yukawa 

coupling GY. If we again make it weaker, G/4, we get the result in Fig 5.4. 
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Fig 5.4. The root of the ratio of the strong to electromagnetic coupling 

divided by the expected ratio with one quarter of the gravitational constant. 

 

The behaviour is the same as for G/2. The cross over seems to stay. 

 

In this case we note that the energy is coming up quite drastically and hence 

the signals even wider. This makes it somewhat more difficult to get the 

electromagnetic to weak ratio right. We describe in the Appendix how to 

handle this situation. We are dealing with masses larger than the Planck mass. 

We are really at the end of the domain of quantum mechanics. 

 

To confirm these results, we made two more sets, the first one for G*1.5 and 

G/1.5, figs 5.5 and 5.6. 

 

 
Fig 5.5. The root of the ratio of the strong to electromagnetic coupling 

divided by the expected ratio with 1.5 times the gravitational constant. 

 

We clearly see a shift down of the cross over point compared to the last cases. 

The question is whether G/1.5 will follow, fig 6. 
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Fig 5.6. The root of the ratio of the strong to electromagnetic coupling 

divided by the expected ratio with the gravitational constant divided by 

1.5. 

 

 

We see the same behaviour as before, they follow each other. To confirm this 

behaviour, we made a last one with a factor of 1.2. 

 

 
Fig 5.7. The root of the ratio of the strong to electromagnetic coupling 

divided by the expected ratio with 1.2 times the gravitational constant. 

 

 

 

The curve is now shifted down even further. The G/1.2 case is shown in fig 

5.8. 
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Fig 5.8. The root of the ratio of the strong to electromagnetic coupling 

divided by the expected ratio with 1.2 times the gravitational constant. 

 

By now not very surprisingly the same behaviour, i.e. the cross over stays. 

 

We can summarize the results in the following plot where we show the 

Yukawa coupling GY at the cross over point for the various values of the 

gravitational constant G.  

 

 
Fig 5.9. Yukawa coupling GY at the cross over point for various values of 

the gravitational constant. The abscissa is the log of the scaling factor. 

 

 

It looks like we have a minimum at the nominal value of the gravitational 

constant.  The shape of the curve does not look like a normal minimum with 

a rounded off dip. It rather looks like the behaviour of the solutions to the 

wave equation with the dips in the energy distributions. The question we 

asked ourselves if the behaviour in fig 5.9 represents the solution to the wave 

equation but for a potential representing the combined effect of correlated 

gravitational and strong forces.  
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The points entering the plot represent the summary of a lot of solutions to the 

wave equation as function of GY as well as function of the gravitational 

constant G. This means that we are dealing with a two-dimensional potential. 

Exactly how to interpret the potential and how to understand the mechanism 

behind it, is not easily deduced.   

 

We plot the values in the following table as well. 

 

 

 

 

 

G*a  

 

Yukawa coupling 

GY at crossover 

1/4 63 

1/2 61 

 

1/1.5 56 

 

1/1.2 50 

*1 44 

*1.2 51 

*1.5 57 

*2 59 

*4 62 
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To remind you, the crossover point is the point where the calculated value 

of the strong to electromagnetic ratio fits with the expected value. Please note 

the symmetry of the values. 

 

 

Conclusion. 

 

Our result indicates that the 

strong force exhibits a 

minimum at the present 

value of the gravitational 

constant. 

 

 

 

This is quite a remarkable result. We have checked our procedure very 

carefully, but we find no obvious reason for this behaviour.  Before we found 

this out we thought that we just would get a curve with some slope as function 

of G. We have so far, no good explanation for the observed behaviour. 

 

However, if our procedure could be improved and made more automatic, we 

could use it to determine the gravitational constant in a completely new way. 

This will check out whether the minimum exactly coincides with its present 

value.  

 

In the procedure we have required the electromagnetic to weak ratio come out 

right but remember that we are dealing with quite small adjustments. What 

would happen if we changed this requirement? Looking at the case with the 

nominal value of the gravitational constant, points at the largest values of the 

Yukawa coupling GY will change more than values at lower GY. The net effect 

will be that the crossover will shift a bit up or down depending on if we 

require the electromagnetic to weak ratio be larger respectively smaller. We 

are talking about shifts of the order 1-3 units in the crossover point. And they 

will all move in the same way, i.e. the result will look just the same. They will 

only collectively move a bit up or down. 

 

However, the effect will be about the same irrespective of the value of the 

gravitational constant. If we for instance look at the cases with G*2 and G/2 

it means that the crossover will make a similar shift in both these cases. This 

means that the points will still be about symmetric around the nominal value 
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of the gravitational constant. Taken together this means that our assumption 

of the electromagnetic to weak ratio being at is expected value holds. 

 

It is not easy to understand why the outcome is much the same on both sides. 

We can see what happens due to changes of R and M, but to see how it affects 

the distribution in R is much more difficult. We also have the Lorentz factor 

that changes at the same time making things more difficult.  

 

The question then comes on what kind of mechanism that could cause this. 

First, we note that the value of the gravitational constant determines the 

magnitude of the strong force. This in turn means that it determines the 

magnitude of the electromagnetic force as well. This follows from the fact 

that at the cross over point the calculated value fits with the expected one and 

we have a simple equation to solve. Knowing the electromagnetic coupling 

we can then also determine the weak constant. 

 

We could turn the arguments around. If the minimum is the right answer, we 

can determine not only the gravitational constant but also the others.  

 

Conclusion. 

 

If the minimum is the right 

answer we can determine 

the couplings of all the four 

forces absolutely. 

 

 

 

Indeed, a remarkable finding.   
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6. Consequences. 
 

 

So, if we can explain the value of the gravitational coupling, we have in 

practise determined all forces. If the gravitational coupling is slightly 

different, the strong coupling would differ from its known value and 

consequently a different value of the electromagnetic one, i.e. the charge of 

the electron would deviate from its known value. 

 

If the charge of the electron changes so will the chemical bindings do. What 

would happen to the DNA molecule? Will it still function or just looking 

different? We could imagine a different kind of life form if it will work at all.  

 

In any case intelligent life may not exist. This means that there can be no one 

around to observe the value of the gravitational constant. Turning it the other 

way around, only when the gravitational constant has its present value 

someone can be there to observe it.  

 

In other words, this is the only value we can observe. However, one question 

remains. What process sets the value? The answer could simply be by 

accident! You may not like the idea that we are just a random product. 

However, think a bit about it. 

 

There may be another explanation. The idea arose that the gravitational 

constant is floating. In fact, it could depend on the total mass of the universe! 

Exactly how we cannot tell. 

 

Let us explain. First, we have stated that the gravitational force is needed to 

conserve energy. Let us look on the case where a bubble creates a pair of 

electron-positrons. The electromagnetic force would prevent them from 

escaping, i.e. energy is conserved. Now assume that the pair directly 

annihilated into two photons at production. We would then need the 

gravitational force to uphold energy conservation. However, it is quite easy 

to see that the present value of the gravitational constant would be far from 

enough. It is in fact a factor 1039 to weak. 

 

So, what prevents this scenario? The answer is the creation of the universe. 

As we have explained in our earlier book it will quite quickly build up to a 

mass that is enough to prevent the photons to escape.  
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It is interesting to note that if such a thing would happen today the mass of 

the universe turns out to be just enough to prevent such a scenario. That is, 

energy conservation would hold. Off course it is the present size together with 

its mass that makes the criteria fulfilled. An example: If the mass is 2*1052 kg 

and the radius 5.5*109 ly (1 ly ~ 1016 m), the potential energy would be 

enough. If the universe would have been larger the force would not have been 

strong enough. Just the pure fact that it seems to balance is intriguing. 

However, keep in mind that our predictions are not too accurate (the findings 

in our earlier book concerning these numbers). 

 

However, if the universe keeps on expanding the gravitational force would 

eventually become too weak. This means that the gravitational constant 

would have to become stronger to uphold energy conservation. We could turn 

the argumentation around and use the present value of the gravitational 

constant to correlate the mass and the size of the universe. E.g., given its mass 

we can determine its present size. 

 

You may think whatever you like about that explanation.  It might be more 

exiting if there were some spectacular mechanism behind it. A new particle 

on your agenda perhaps? As we have said before, we cannot tell nature how 

to behave.  

 

And again, do not forget about the changing chemical bindings when the 

gravitational constant changes. Luckily it is a long-term scenario. Even with 

an accelerated universe, which we in our earlier book on the other hand found 

to be most likely an illusion.   

 

There is another interesting consequence of this discussion. Intelligent life we 

could expect to look alike where ever we go in our universe. This because the 

chemical bindings are the same. The inhabitants would look much like us.  

No little green men lurking around. In another universe it could be quite 

different. 

 

There is a more profound question that we hardly can explain. Why should 

nature bother about energy conservation?  
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7. Other consequences. 
 

 

 

Off course this might not prevent other types of universes to be build. How 

can we know? These other universes will have another value of the 

gravitational constant. It is just a random process. Nature will keep on trying 

and once a seed is formed the evolution gets triggered. The seed gave rise to 

some value of the gravitational constant. If it happened to be right the process 

will continue, else not. 

 

This is perhaps not quite satisfactory, i.e. not being able to give a definite 

procedure. Perhaps easier to believe in something divined? To our mind, 

randomness seems to fit well with the behaviour of nature. 

 

Is this not just in line with the evolution of Darwin? Nature keeps on trying 

and if it works the process continues. If not, end of story. 

 

So, please go out into nature and absorb its beautiful randomness. 
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8. Points vs sizeable particles. 
 

 

A question that might appear is what would happen if we treated objects like 

points. All theoretical formulations treat particles as points. The bad thing 

with that is the occurrence of singularities and the need for renormalisations 

and so on. As we showed in our earlier book the Coulomb force turned into a 

nice function when we gave the electron a size (and a content). 

 

If we treat the objects as points, i.e. we set the correctional factors to 1, the 

outcome is not very encouraging. We just see nothing. Actually, we do see an 

infinite number of signals and when diving into them the distribution of R 

shows never ending oscillations. Not very conclusive. 

 

It must be clear that we must consider the sizes of the interacting particles. If 

we do not, funny things appear. Furthermore, mathematics does not give 

physics, it is physics that dictates the mathematics we need to describe 

physical processes. 
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9. Gravitational structures of the Majorana type. 
 

 

We have so far treated gravitational objects or Gravs as particle and 

antiparticle. What happens if the antiparticle is the same as the particle, so 

called Majorana particles? 

 

For a given pair of R and M both ratios come up a few per cent. If we modify 

R and M to get the electromagnetic to weak ratio right, we come back to the 

original situation, i.e. we see no difference. 

 

We should perhaps clarify that the force between Gravs are always attractive 

irrespective of their type. It has been suggested that there could be a repulsive 

gravitational variant, this to explain the hypothetical accelerated universe. We 

say hypothetical because in our earlier book we showed how the acceleration 

could be explained as being just an illusion. 
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10. Can there be a fifth force? 
 

 

Looking at the fourth level we will see four peaks. We still make the same 

requirement on the gravitational force at R=0. This means we are just 

investigating whether there can be a fourth super weak force. 

 

A typical outcome is that the square root of the ratio of the two largest peaks 

now is down by 15%. On the other hand, the ratio of the second to the third 

drops to 1/10th of the expected ratio. The ratio of the 3rd and 4th becomes 

30% lower than the ratio of the electromagnetic to weak. This makes no 

sense. 

 

Summing up, this scenario does not fit at all. The question then comes if 

there could be a super strong force. But should we not have seen it? We 

have not investigated this scenario since it is a bit too hypothetical.  
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11. The exchange mechanism of the forces. 
 

 

In our earlier analysis we used the known exchange mechanisms in 

determining the radius and mass of the elementary particles. If we had not, 

the masses would go wrong. In the proton case the effect (order 1.5%) is too 

small to be seen, clearly less than the errors. In the neutrino case it would be 

much larger but on the other hand we do not know what its mass is. It must 

be obvious that we still need some piece of extra information to pin down 

everything. 

 

Taken together with our new findings we get a consistent picture of the nature 

of our fundamental particles and their corresponding forces. Almost, we 

should add. We are still lacking a small piece of information. 

 

We should stress the fact that it is only through our new formulation of the 

gravitational force these findings come out. We would like to remember that 

it gives various predictions in line with observations (e.g. the perihelion shift 

and the bending of light).  
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12. Gravitational structures and tidal waves. 
 

 

As we have explained, we pictured the process by two virtual gravitational 

structures flying apart. A typical radius of such an object is 1.7 10-35 and a 

mass of 1.9 10-8 kg. Such an object is very massive but in practise invisible. 

You would hardly notice if it passed through you. You would look like empty 

space. However, if a big lump of them passed through you might feel a bit 

shaken. 

 

Now say that a big bunch of them would be produced in some violent collision 

between e.g. black holes. They will spread out like a tidal wave with the speed 

of light. Presumably it could be detected like a gravitational wave. 

 

We have tried to solve the Dirac equation for a pair of Gravs just like we did 

for the fundamental particles.  It turns out that our precision is not quite 

good enough. We see signals, but we cannot zoom in on them. The points 

are jumping around a bit too much. Despite that we occasionally get 

distributions in R that might be accepted. We show in fig 12.1 how it looks 

like for the object vid mass 1.9e-8. 

 

 
Fig 12.1. The probability density R2 Ψ Ψ*. 

 

 

 It is interesting to again compare with the electron case, fig 4.7, part I. The 

scale has been set such that you could compare. As you note the tail is not as 

pronounced any longer. The same goes for the linear case, with solutions to 

the Klein-Gordon equation, investigating the gravitational force itself. We 

show an example in the Appendix. 
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However, for curiosity we tried out an object with the Planck mass and 

radius and it turned out to be not too bad. A bit of a surprise we would say. 

The energy spectrum is shown in fig 12.2. 

 

 
Fig 12.2. The behaviour as a function of the binding energy in units of 

joule. 

 

It could be interesting to compare with the electron case, fig 4.6, part I. Just 

look on the energy scale and you will notice the difference. The sharpness of 

the signal disappeared. We also plotted the radial distribution which comes 

out very nicely, fig 12.3. 

 

 
Fig 12.3. The probability density R2 Ψ Ψ*. 

 

Please note the change in scale from Fig 12.1. The distribution is in fact like 

the one Fig 12.1. If you are sharp eyed, you may see a tiny indication of 

background. 

 

In chapter I.6 we found that if we bring an object from infinity to a distance 

R from a gravitational source M, the Lorentz factor could be written  
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21/ (1 )L GM Rc   . (1) 

 

To avoid a singularity, we must have 

 
2R GM c .  (2) 

 

If you multiply the right-hand side by 2 you get the Schwarzschild radius, 

which is the outcome of General relativity. As we noted in our earlier book 

quantities like the perihelion shift and the bending of light on the other hand 

come out exactly the same in both treatments. 

 

For a typical object of mass 1.9*10-8 R becomes 1.4e-34 according to (2). 

Earlier we mentioned a typical radius of 1.7*e-34, i.e. (2) is fulfilled. We just 

note that the Planck object leads to equality in (2). 

 

What happens if we change the gravitational constant? In the case G*4 we 

needed to decrease M by a factor of 2 but also to increase R by the same 

factor. The factors will cancel and (2) is fulfilled.  If we instead look at G/4 

M is increased by a factor 2 while the radius is decreased by the same factor. 

Again (2) is fulfilled. In both cases the Yukawa coupling GY will come out 

about the same. As we noted earlier, the two calculated ratios come out 

approximately the same for a given value of GY. 

 

Lastly, would not the gravitational structure fit well with the present proposed 

requirements on dark matter? In the next chapter we will discuss how to detect 

them. 
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13. Detecting gravitational structures. 
 

 

The problem with a typical Grav is its smallness. A Grav could go right 

through a proton without problem. Compare with sticking a sharp needle 

into an apple. If we let a Grav imping on a proton, what would happen? 

 

Since we would like to investigate the effect on the proton we instead look 

on a proton passing by a Grav at rest. We look on the case where they just 

touch each other. Since the proton is much lighter than the Grav, we can 

treat it the same way as we did with the bending of light. 

 

The scattering angle can be written 

 

2 2
*

dU GM dR
d

E c R
   . 

 

Which gives 
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R2 we set to infinity. R1 we set to .9*10-15. With M=1.9*10-8 we arrive at 

β=1.6*10-20. This directly tells us that the energy transfer is indeed small. If 

we instead take an electron as target we would find β=2.0*10-20 using a radius 

of .70*10-15 as we found out in our earlier book. If we have a wire chamber 

filled with hydrogen gas, the energy transfer will not be enough to rip off the 

electron from the atom. If we look on other gases, we have some difficulty in 

finding any suitable ones. 

 
Instead we must find substances with suitable excitation energies. The excited 

electron will drop down more or less directly resulting in a photon. By 

suitable photon detectors surrounding the chamber we could detect it. Still we 

have some difficulty in finding good substances. The energy transferred is in 

fact less than the hyperfine splitting in the hydrogen atom.  

 

If there is some gas that can be used, we still need the wire chamber, not for 

detection but rejection. There should be no signal in it if a Grav passed by 

since it cannot ionize the gas. In this way we can get an estimate of the 

background. The problem is how to reject against neutrino induced 
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excitations. We could look on events with a single electron track originating 

within the chamber to get some estimate. 

 

The only other way we could think of is that a whole bunch of them are 

produced in some way and hits earth and is detected like a gravitational wave. 

They will be spread out over one hemisphere, but we do not know what it 

would take to trigger such a device. 
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14. Summary. 
 

 

We have in our earlier book shown how the elementary particles can be 

created out of vacuum without breaking the standard conservation laws. 

The consequence of that process is that two pairs of deeply bound particle-

antiparticles are created to match the released energy while energetic 

particles escape. A second consequence is that due to particles now being 

built by confined fields, the Newton gravitational law must be 

reformulated. In this new form various predictions come out quite right. 

 

This is the basis of what we call “the Freezening”, a new model of the 

creation process of our universe. It leads to galaxies having a massive core 

in its centre. We note that the predicted masses of cores fit well with 

present observations of black holes.  

 

We made the hypothesis that the gravitational force was the generator of 

the three species of fundamental particles. It is the most fundamental 

force of them all and must always be erected. We have now shown how 

this can come about. This means that we can predict the magnitude of the 

couplings of the forces.  

 

If we let the value of the gravitational constant vary, we find that the 

strong force exhibits a minimum right at the present value of the 

gravitational constant. This is a quite remarkable finding. This means that 

we can deduce the couplings of all the four forces. As a strange 

consequence, we can mention that if the value of the gravitational 

constant would have been different from its present value, life as we 

know of most likely would not exist. 
 

In all we have a consistent picture of how nature can create a universe with 

the known fundamental particles and their corresponding forces. 
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15. Short history. 
 

 

We just would like to mention something about the history behind this work 

and our earlier. 

The original idea came about 45 years ago at the time the author was working 

for his theses in particle physics.  It all started with the question why quarks, 

the really hot stuff then, were not seen. Later some clever guy stated that they 

were only asymptotically free. Nice fix. 

 

However, it led to the question whether quantum mechanics could explain it 

in some way. Consequently, that led to the question how particles can be 

created and how a universe could be formed. At that time, we were too busy 

with the daily stuff so that it was forgotten. Until about 14 years ago when it 

popped up again.  

 

Lastly, we just like to note that the author has a long experience of working 

with and constructing simulations of e.g. large detector systems (NA4, 

ARGUS and a proposal for a detector at HERA). 

  



 64 

 

 

Appendix part I.   
 

  
1.The electromagnetic force. 
 
1.1 Preparing the wave equation. 
 
Wave equations only holds for point like objects. To set up a wave equation 

for composite bodies is most likely an endless story.  We could divide a body 

into a million pieces and construct a million equations coupled in some 

complicated way. However, how to solve them?  We will take another 

approach. 

 
What we do is to find a correction to the Coulomb potential to mimic points. 

I.e. with a modified potential we can use the Dirac equation to solve the 

problem for two big balls. The correction is determined by calculating the 

resulting force starting from some assumed distribution of points. Since we 

do not know that distribution we have investigated various scenarios. If the 

density of points goes as the inverse of the radial distance, the produced 

electrical field will be constant with R inside the object. This is the hypothesis 

we will begin with.  

 

The normal procedure to solve equations like this is to let one object be at rest 

and the other circulating around with its reduced mass. This means that the 

actual calculation we perform starts off by looking at the field produced by 

the one at the centre.  Shortly, we can treat it as build up by current tubes that 

produce an electric field as well as a magnetic one. We separate these 

contributions in order get a better understanding of how things work. This 

also gives us a better chance to check out the procedure.  

 
 

 

 

 

 

 

 

 

 



 65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1 Two objects in close encounter. S’ is rotating around S. 

 

To get the effective force we have to integrate over two spheres, for every 

point C in one sphere S’ we calculate the field generated from all points A in 

S and sum up the resulting force. In doing so we take care of the relativistic 

effects as described below. We do the integration numerically for varying 

distances R between the objects and then we just fit a simple expression to 

parameterise the result.  By integration of the resulting distribution we find 

the potential. Both are needed. We express the result as a correction factor to 

a point like coulomb interaction.   

 

In these calculations we separate the original electrical and magnetic fields. 

The treatment is a bit different, but we also would like to see the importance 

of the two components. The magnetic field gives rise to two contributions, 

namely the force between two magnetic moments and the effect of the 

magnetic moment of the particle at rest on the moving charge. In solving the 

wave equation, we work as usual in a system fixed at one of them.  

 

There is in fact a third effect, namely the force on the particle at rest due to 

the electric field generated by the moving dipole. However, this is 

automatically included by the relativistic treatment. This treatment is made in 

two steps. First, every point is transformed from the precessing system S’ 

A 

 

z z’

 

x 

y’ 

S S’ 

C 
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attached to the moving particle to the system S at rest. Then we apply the field 

from the object at rest. 

 

The treatment of the precession ωT (see under kinematics), known as the 

Thomas effect in atomic physics, gets more complicated in our case. If you 

try to use it straight off, you will find that the surface of the particle might be 

moving faster than light! Off course, a point does not care about that. Now 

we must care for the internal rotational energy that leads to a modified result. 

In fact, for a given available kinetic energy a point will move faster than a 

spinning ball in an orbital motion. Part of the linear energy goes into rotational 

energy. 

 

We all know that a sizable object will look compressed when moving fast. A 

ball will look like a cigar from the side. If you now let the ball rotate, the cigar 

will get even more deformed and look like nothing else.    

 

In doing all this it is clear we must have a model for the particle. The result 

will differ depending on how we look upon it. You may now start to realize 

that this is getting complicated. It’s almost like a never-ending story.   

 

In the model we now used we assume that we have a constant electric field 

that is rotating. To achieve this, we use a point distribution that goes like 1/r, 

where r is the radial distance inside an object. 

 

 

 

 

1.2 The electrical field contribution. 
 

There are different ways to treat this field.  The first way is to start off from 

the object at rest and calculate the field at every point in the moving object. 

We then apply the Lorentz force in usual manor and get the component of the 

force along the common axis. 

 

The other way is to divide the moving ball into small cells that we treat as 

moving charged points. In doing so we can use the retarded potentials or 

better the Effimenko fields directly. However, the retarded point is not so 

easy to find since the points move in complicated orbits. In the first way we 

could divide the rotating ball at the centre into static current tubes with a 

given linear continuous charge density.  
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Since the charges are rotating they will be describing an accelerated motion. 

In principle they would radiate. However, the situation is the same as in the 

atomic world. We are only interested in the case when the two objects are in 

a quantized state where no radiation takes place. We have simply switched it 

off. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.2. A current element of charges moving with relative speed β. 

 

Since the electrical field E’ is perpendicular to the current element the 

component in C is γE’sinά. However, the observed angle is α. Using bb 

, 21/1   , 

we have 

 
./  tgtg   

 

This gives 

 222 )1(1/1/sin tgtgtgtg   

         .sin1/sin 22    

 

Likewise, we find 

.sin1/coscos 22    

 

The distance becomes 

 22 sin1cos/coscos/cos/  DDbbD  

 

The gives us the field 
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where dsq   due to the Lorentz contraction, ρ is the charge density, ds 

the line segment. 

 

The force between the two objects caused by a charge δq in A and an element 

δq in B then is 

 

D

D
qEqEFF x

xx *  , 

 

where E is given by (1). D is the distance vector from A to C. The net force 

is obtained by integrating over both spheres. 

 

As a check-up we calculate all components of F to make sure that there is no 

net force in the perpendicular directions. 

 

 

 

1.3 The magnetic field contribution. 
 

We are not going to deal with the vector potential. We have to deal with forces 

and we note that the magnetic fields from two dipoles gives rice to a force 

that only depends on R. We can therefore calculate a scalar potential, just as 

in the electrical case. Since we have a static situation we can use the standard 

Biot-Savare formulation if we just remember to scale the charge density 

according to its velocity. 

 

The magnetic field in C from a current element A is 

30 /
4

DDxvqB A



 . 

 

The angle between Av  and D is just the same as for the electrical field case, 

i.e. we can use the derivation from above. 

 

The force on a charge δq in C is 

 

BxvqF C  
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Again, we integrate over the two spheres and take the component of F along 

the x-axis. 

 

 

 

1.4 Correctional factors. 
 

The calculation of the force between the two objects is repeated for various 

distances between them. The result is normalized to the coulomb force 

between two points in both cases. The correctional factor to the force is given 

through 

 

pV
r

k
F

2
 . 

 

The correction Vc to the potential is defined in a similar way. 

 

We fit an expression to resulting distribution that is used in the Dirac 

equation. This expression must be very smooth because otherwise we will get 

problems with the wave equation. We will explain this below. A smooth 

expression could be a short polynomial (2-3 terms normally) divided by a 

longer one. In this way we can get the right asymptotic behaviour.  

 

In the case of the B field, we have dressed up a sinus function with 

polynomials. 

 

The whole procedure has to be repeated a few times in order to make it 

converge. We note that the region of small R is not very well determined due 

to precision problems.  

 

 

 

1.5 Kinematics. 
 

When solving the wave equation, the procedure is to transform to a system 

where one is at rest and the other is turning around but now replaced by its 

reduced mass. 
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For a given R the potential energy and the force depends on the correctional 

factors. On Vc and Vp respectively. From the kinetic energy we get the speed 

and can calculate the acceleration from the force: 

 

22 /1 cv
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dt

dp
F


 .    (2) 

 

This holds in the case of a circular orbit where the object moves with constant 

velocity. On the left side we have: 
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From this we get the Thomas frequency (see any textbook on the subject) 

 

vcvaT /)/11(* 22 . 

 

If we assume the object moves in a circular orbit we have the following 

relation between the speed and the acceleration: 

 

aRv *2  .     (4) 

 

This is the classical expression, but it holds also in the relativistic case. Now, 

it turns out that when R is in the region around 2R0, the velocity of the boarder 

becomes larger than the speed of light! R0 is the radius of the object. If we on 

the other hand use (4) in (2) we can solve for a or v from the force. This time 

the velocity is reasonable but quite larger than the velocity as given by the 

kinetic energy. 

 

Something definitely looks wrong. One would first come to the conclusion 

that the object is not in an orbital state but has a vertical speed component. 

That will just make it even worse. 

 

The problem goes back to the behaviour of the correctional factors. The 

kinetic part will in fact never go to zero with decreasing R, while this is the 

case for the force. In fact, the force becomes negative when R goes below R0 

approximately. 
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The real problem is how to understand this. One could say that when R is not 

equal to that of the bound state we will get such kind of result. Then we are 

thinking in classical terms, which is hardly applicable here. At the end the 

wave function will tell us that we are in a less likely situation, but not 

completely forbidden. 

 

We have investigated the effects of using the different methods to determine 

the Thomas angular velocity. There are effects, but in short, we are talking 

about a few percent at most in the energy of the solutions and less in the 

radius. We also used an average of the two methods. The nice thing with this 

is that the angular velocity comes out to approximately ½ of the spin for R in 

the region between R0 and 2R0. This is in fact what happens in case of the 

hydrogen atom. The meaning of this is not clear to us. When R is outside ωT 

will drop. 

 

 

 

1.6 The Dirac equation. 
 

 

We use the Dirac equation since we are at relativistic energies. This equation 

can be written 
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for a potential A . This equation can also be written as two coupled first order 

equations expressed in the two components f and g of the wave function (see 

any text book on the subject): 
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where F= r*f and G= r*g. 

 



 72 

To solve, we rewrite it as one equation in the second derivative and solve for 

either component of the wave function. In order to reduce these equations into 

one we substitute G from the first into the second. After some algebra we get 
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where  11k ,  12k  solving for f,g or 1k , 2k  solving for 

F,G.  = (j+1/2), j =total angular momentum and 
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  . pV  and cV  are the correctional factors for the force 

and the potential respectively. The equation is rewritten with a change of 

variable before implementation. 

 

There are some difficulties in solving it due to discontinuities caused by the 

A-terms. The procedure is to first find them and then adjust the stepping in 

such a way that we encompass them in a symmetrical way. When we come 

close, the stepping is refined by a factor 1000 typically. There can be several 

discontinuities over the stepping region. It all depends on the shape of the 

correctional factors. The stepping is done in quadrature. 

 

If the correctional factors are not smooth enough we can get artefact solutions. 

A small kink can give a “ghost” signal. 

 

Since we do not know what kind of states there might be, we do an energy 

scan. This means that we calculate the behaviour of the wave function as 

function of R for a given binding energy and investigate how it varies with 

energy. More precisely we check how the tail behaves by taking a sample of 

it at large R and plot that quantity.  Instead of peaks we are looking for dips. 

 

The procedure is to assume some value for the R0 and look for a solution. The 

result will be some values of the binding energy and the peak of the 

distribution in R. We use the new value of R0 as input and repeat until stable. 
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If we have found the correct solution the process will converge, otherwise 

not. 

 

There might be questions whether the result we get simply is what we put in. 

Solving for the case of the hydrogen atom, we know that the energy levels 

scale with the mass of the electron. This could be interpreted as if we used 

another value of the mass as input we will get that as a result. However, in 

doing so the correctional terms will change leading to a different solution. 

 

 

 

1.7 Field energy content. 
 

 

The energy is given by 
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To calculate it we follow the procedure described earlier, with the difference 

that the point C is an empty cell in the left ball. For every point A (except C) 

we sum up the fields for E and B separately in point C. We calculate E2 and 

B2 and then sum up over all points C. We note that the integration is a bit 

sensitive to the actual binning. The errors given should reflect this. 

 

Assuming the model with a constant field rotating inside the object we have 

calculated the energy content analytically. The speed v, being perpendicular 

to E, gives us the fields 
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Inserting this into (2) we get 
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The energy density of the electrical field is (from the solution to the Dirac 

equation) 
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The expression within brackets is equal to the particle rest energy (mc2). 

However, there is a normalisation factor associated with the constant field 

itself. The field is the result of using a point distribution with weight 1/R. It 

is the component along any axis that counts as described earlier. This gives 

us a factor 2/3 for the field squared.  

 

 We evaluate the resulting integral by using spherical coordinates:  
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where we used v = r sin/c. r runs from 0 to R0,  form 0 to  and  from 0 

to 2. 

 

If everything fits, we should have I=1. Integration over  gives a factor 2. 

The rest becomes, setting b=/c 
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bR0 is simply the rotational velocity of the surface, 0 (=v/c). We have 

assumed that the surface will get the same speed as the particle has after 

collision, which is the speed it has in the bound state. Inserting the limits, we 

can write 
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where  is the Lorentz factor and 0 corresponds to an energy of two masses 

worth, i.e. 0  =0.9428. This gives 

 

I=1.25. 
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Not quite unity, but the prescription for the normalisation is maybe not fully 

consistent with our original procedure. We must stress that we at first did not 

expect that we at all would get something reasonable out of such a simple 

assumption. We must remember that this is just a first attempt to find a 

description of the electron.  
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2. The strong force. 
 

 

We will assume that the force can be described by the old Yukawa potential 

right at the threshold. It is adequate in this region: 
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and where Gpπp is the pion-proton vertex coupling. L is the order of the pion 

Compton wave length (h/mc= .9*10-14 M).  

 

 

The correctional terms are now defined through 
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The procedure determines F and the potential U is then obtained by 

integration. To keep the field constant with R the weight factor, being 1/R in 

the case of the electron, must be slightly modified. This new factor is 

normalised to the boarder of the particle, i.e. for R=R0. R0 is the radius of the 

particle. This gives an overall normalisation of (1+R0/L)e-R0/L . 
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3. The weak force. 
 

 

Firstly, we assume that we can use the Yukawa type of potential just like 

the proton case since we are right at the threshold. It is adequate for the 

nucleon case in this region. More precisely we use the same Yukawa 

potential but with an effective coupling of 

2
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G
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
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where the Fermi coupling FG is 1.16*10-5.  
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4. The gravitational force. 

 

 

 

The wave equations. 
 

The implementation of the gravitational force in the wave equation turns out 

to be less obvious. How to deal with the Lorentz factors? We can hardly put 

them directly into the equation. 

 

The only solution we find is that they must be implicitly included through the 

calculation of the correctional terms. A correctional factor just expresses how 

the force between the objects changes from a pure point like Coulomb type 

of interaction. And this is exactly what we need. 

 

Dividing the objects into many pieces as before, we calculate the force 

between all pairs of pieces using the full relativistic formulation of the 

Newton law. This means that for every point A and C the force is scaled by a 

factor  
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as obtained from equation (1), section 6.1 in part I. Due to this extra factor, 

the 1/r weight must be slightly modified to keep a constant field inside the 

object. 

 

Summing all up using just the radial component we should get the net force. 

The final correctional factor is obtained by normalising to the Newton force 

between the pair of objects that now corresponds to the Coulomb force. 
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Appendix part 2. 
 

 

1.The Dirac equation. 
 

It is the same as in Part I. We need it to investigate whether gravitational 

structures can be formed in the same way as for the fundamental particles. 

The only difference is that the net correctional factors change a bit why we 

show them below. The electrical and magnetic contributions have been 

added together in their right proportions. 

 

 
Fig 1.1. The effective force with the correction applied. 

 

This one looks a bit shaky compared to the distribution in Part I. It is caused 

by limitations in the precision. In the implementation the two contributions 

are treated separately and parametrized. This will remove kinks that 

otherwise could cause ghost signals in the solution. 

 

 
Fig 1.2. The effective potential with the correction applied. 
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2.The Klein-Gordon equation. 
 

To treat the linear case for the gravitational force we use the Klein-Gordon 

equation. This equation can, for a free particle, be written 
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We introduce a Coulomb like potential by the normal replacement 
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with Aμ = (0,0,0,iA0), eA0=V(x). This gives 
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where δAμ=Div A=0. 
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  and Aμ δψ/δxμ=iA0δψ/icδt we get 
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In this case we only need one type of the correctional terms. We show in figs 

3 and 4 the “electrical” and the “magnetic” respectively.  

 

 
Fig 2.1. The behaviour of the correctional factor for the electrical part. 

 

 

 
Fig 2.2. The behaviour of the correctional factor for the magnetic part. 

 

In difference to two objects turning around each other we do not need to 

bother about the complications with the orbital motion, like the Thomas 

frequency. Else we can use the same formulas if just change the velocity 

vector from orbital to linear. 

 

We add them together in their right proportions in the next figure. It is slightly 

different from the one shown in part I. 
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Fig 2.3. The effective potential with the correction applied. 
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3. Extracting data on the ratio of strong to electromagnetic forces. 

 

 

We will here describe the procedure to extract the values. It involves two 

kinds of corrections. One is the corrections due to background. Such 

corrections are about 30% for smaller values of the Yukawa coupling GY 

but drops to about 10% at the largest values. The other one is a correction 

we make when the electromagnetic to weak ratio is off from the known 

value. At lower GY it is normally zero while becoming 5-10% at most at the 

larger values of GY. 

 

The first correction takes the raw value down while the second goes the 

other way around. This is a lucky situation since it tends to move points 

towards the line, not away. This means that we do not create the effect 

observed. 

 

The background turns up like oscillations above the largest peak in R, fig 

3.1. We clearly see how that peak is distorted when the background 

increases. Compare to fig 2.2 in part II. In that case the energy was lower 

and the dip in energy much sharper why we got rid of the background.  

 

 
Fig 3.1. The probability density R2 Ψ Ψ*. 

 

 

The procedure is to use the first oscillation above the peak and subtract a 

certain fraction of it to obtain a distribution that falls off nicely. The position 

of the peak of the oscillation is shifted down by twice the half width. This is 

the spacings of the oscillations. The oscillation itself is subtracted as well as 

a check-up. We show the result in fig 3.2. 
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Fig 3.2. The probability density R2 Ψ Ψ* with correction. 

 

 

 

The subtraction is perhaps not perfect, but we add an error of 5% to the total 

error to cope with the uncertainty in the procedure. 

 

We note that the distribution of R at larger energies seems to have a faster 

fall off than at lower energy. Which means not quite like the one in fig 2.2, 

chapter 2, part II. That one was taken at lower energies with no background. 

We had a case at larger energies where the background was estimated to 

only 1.3% and which looked like the one above. We also discussed this in 

connection with the Dirac equation that the tail will be suppressed when the 

energy goes up, Fig 12.3, part II. 

 

 

Concerning the second type of correction, we have investigated points close 

by in the Yukawa coupling GY but which differ in the raw value of the 

electromagnetic to weak ratio. We find that the correlation between the two 

ratios are in practise one to one when the electromagnetic to weak ratio is 

off by less than about 5%. This means that one unit of correction of the 

electromagnetic to weak ratio is applied on the other ratio. However, when 

the correction becomes larger we use a reduced amount. The reduction will 

gradually decrease to about 85% when it is off by about 10%. Points with 

larger discrepancies are rejected. Instead we try other values or 

parametrisations to find a better ratio. The result is that close by points agree 

after applying the correction (within a few per cent). The error in this 

procedure is estimated and added to the total error. 

 

 

 


